Abstract

<abstract><p>In this paper, we mainly study the following boundary value problems of fractional discontinuous differential equations with impulses:</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \hskip 3mm \left\{ \begin{array}{lll} _{t}^{C} \mathcal {D}^{\mathfrak{R}}_{0^{+}}\Lambda(t) = \mathcal {E}(t)\digamma(t, \Lambda(t)), \ a.e.\ t\in Q, \\ \triangle \Lambda|_{t = t_{{\kappa}}} = \Phi_{{\kappa}}(\Lambda(t_{{\kappa}})), \ {\kappa} = 1, \ 2, \ \cdots, \ m, \\ \triangle \Lambda'|_{t = t_{{\kappa}}} = 0, \ {\kappa} = 1, \ 2, \ \cdots, \ m, \\ {\vartheta} \Lambda(0)-{\chi} \Lambda(1) = \int_{0}^{1}\varrho_{1}({\upsilon})\Lambda({\upsilon})d{\upsilon}, \\ {\zeta} \Lambda'(0)-\delta \Lambda'(1) = \int_{0}^{1}\varrho_{2}({\upsilon})\Lambda({\upsilon})d{\upsilon}, \end{array}\right. $\end{document} </tex-math></disp-formula></p> <p>where $ {\vartheta} > {\chi} > 0, \ {\zeta} > \delta > 0 $, $ \Phi_{{\kappa}}\in C(\mbox{ $\mathbb{R}$ }^{+}, \mbox{ $\mathbb{R}$ }^{+}) $, $ \mathcal {E}, \ \varrho_{1}, \ \varrho_{2} \geq 0 $ a.e. on $ Q = [0, 1] $, $ \mathcal {E}, \ \varrho_{1}, \ \varrho_{2} \in L^{1}(0, 1) $ and $ \digamma:[0, 1]\times \mbox{ $\mathbb{R}$ }^{+}\rightarrow \mbox{ $\mathbb{R}$ }^{+} $, $ \mbox{ $\mathbb{R}$ }^{+} = [0, +\infty) $. By using Krasnosel skii's fixed point theorem for discontinuous operators on cones, some sufficient conditions for the existence of single or multiple positive solutions for the above discontinuous differential system are established. An example is given to confirm the main results in the end.</p></abstract>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call