Abstract

<abstract><p>This paper is mainly concerned with the existence of multiple solutions for the following boundary value problems of fractional differential equations with generalized Caputo derivatives:</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \hskip 3mm \left\{ \begin{array}{lll} ^{C}_{0}D^{\alpha}_{g}x(t)+f(t, x) = 0, \ 0<t<1;\\ x(0) = 0, \ ^{C}_{0}D^{1}_{g}x(0) = 0, \ ^{C}_{0}D^{\nu}_{g}x(1) = \int_{0}^{1}h(t)^{C}_{0}D^{\nu}_{g}x(t)g'(t)dt, \end{array}\right. $\end{document} </tex-math></disp-formula></p> <p>where $ 2 < \alpha < 3 $, $ 1 < \nu < 2 $, $ \alpha-\nu-1 > 0 $, $ f\in C([0, 1]\times \mathbb{R}^{+}, \mathbb{R}^{+}) $, $ g' > 0 $, $ h\in C([0, 1], \mathbb{R}^{+}) $, $ \mathbb{R}^{+} = [0, +\infty) $. Applying the fixed point theorem on cone, the existence of multiple solutions for considered system is obtained. The results generalize and improve existing conclusions. Meanwhile, the Ulam stability for considered system is also considered. Finally, three examples are worked out to illustrate the main results.</p></abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.