Abstract

The main goal of this paper is to present multiple solution results for elliptic inclusions of Clarke's gradient type under nonlinear Neumann boundary conditions involving the p-Laplacian and set-valued nonlinearities. To be more precise, we study the inclusion−Δpu∈∂F(x,u)−|u|p−2uin Ω with the boundary condition|∇u|p−2∂u∂ν∈a(u+)p−1−b(u−)p−1+∂G(x,u)on ∂Ω. We prove the existence of two constant-sign solutions and one sign-changing solution depending on the parameters a and b. Our approach is based on truncation techniques and comparison principles for elliptic inclusions along with variational tools like the nonsmooth Mountain-Pass Theorem, the Second Deformation Lemma for locally Lipschitz functionals as well as comparison results of local C1(Ω¯)-minimizers and local W1,p(Ω)-minimizers of nonsmooth functionals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.