Abstract

Metric databases are databases where a metric distance function is defined for pairs of database objects. In such databases, similarity queries in the form of range queries or k-nearest-neighbor queries are the most important query types. In traditional query processing, single queries are issued independently by different users. In many data mining applications, however, the database is typically explored by iteratively asking similarity queries for answers of previous similarity queries. We introduce a generic scheme for such data mining algorithms and we investigate two orthogonal approaches, reducing I/O cost as well as CPU cost, to speed-up the processing of multiple similarity queries. The proposed techniques apply to any type of similarity query and to an implementation based on an index or using a sequential scan. Parallelization yields an additional impressive speed-up. An extensive performance evaluation confirms the efficiency of our approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.