Abstract

p30, the protein required for cell-to-cell movement of tobacco mosaic virus (TMV), has a slightly reduced mobility on SDS-polyacrylamide gels when isolated by immunoprecipitation from TMV-infected protoplasts compared with that of p30 translated from viral RNA in vitro. Further investigation established a probable cause for the difference in mobility between the two: protoplasts incorporate [32P]orthophosphate into p30 at multiple sites, predominantly as phosphoserine. Tryptic peptide mapping reveals at least five internal phosphopeptides in p30, besides the C-terminal tryptic phosphopeptide already reported, involving at least two distinct domains of the protein (at residues 61-114 and residues 212-231), which may be substrates for different protein kinases. These structural results are consistent with a three-domain model for the TMV movement protein with two regulatory domains similar to that recently proposed on genetic grounds for dianthovirus movement proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.