Abstract

A method has been developed for aligning segments of several sequences at once. The number of search steps depends only polynomially on the number of sequences, instead of exponentially, because most alignments are rejected without being evaluated explicitly. A data structure herein called the “heap” facilitates this process. For a set of n sequence segments, the overall similarity is taken to be the sum of all the constituent segment pair similarities, which are in turn sums of corresponding residue similarity scores from a Table. The statistical models that test alignments for significance make it possible to group sequences objectively, even when most or all of the interrelationships are weak. These tests are very sensitive, while remaining quite conservative, and discourage the addition of “misfit” sequences to an existing set. The new techniques are applied to a set of five DNA-binding proteins, to a group of three enzymes that employ the coenzyme FAD, and to a control set. The alignment previously proposed for the DNA-binding proteins on the basis of structural comparisons and inspection of sequences is supported quite dramatically, and a highly significant alignment is found for the FAD-binding proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.