Abstract

Multiple sequence alignment (MSA) is an essential prerequisite and dominant method to deduce the biological facts from a set of molecular biological sequences. It refers to a series of algorithmic solutions for the alignment of evolutionarily related sequences while taking into account evolutionary events such as mutations, insertions, deletions, and rearrangements under certain conditions. These methods can be applied to DNA, RNA, or protein sequences. In this work, we take advantage of a center-star strategy to reduce the MSA problem to pairwise alignments, and we use a suffix tree to match identical substrings between two pairwise sequences. Multiple sequence alignment based on a suffix tree and center-star strategy (MASC) can accomplish MSA in O(mn), which is linear time complexity, where m is the number of sequences and n is the average length of sequences. Furthermore, we execute our method on the Spark-distributed parallel framework to deal with ever-increasing massive data sets. Our method is significantly faster than previous techniques, with no loss in accuracy for highly similar nucleotide sequences like homologous sequences, which we experimentally demonstrate. Comparing with mainstream MSA tools (e.g., MAFFT), MASC could finish the alignment of 67,200 sequences, longer than 10,000 bps, in 9 minutes, which takes MAFFT >3.5 days.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.