Abstract

We study separatrix crossing in near-integrablek-degree-of-freedom Hamiltonian flows, 2 <k < ∞, whose unperturbed phase portraits contain separatrices inn degrees of freedom, 1 <n <k. Each of the unperturbed separatrices can be recast as a codimension-one separatrix in the 2k-dimensional phase space, and the collection of these separatrices takes on a variety of geometrical possibilities in the reduced representation of a Poincare section on the energy surface. In general 0 ≤l ≤n of the separatrices will be available to the Poincare section, and each separatrix may be completely isolated from all other separatrices or intersect transversely with one or more of the other available separatrices. For completely isolated separatrices, transitions across broken separatrices are described for each separatrix by the single-separatrix crossing theory of Wiggins, as modified by Beigie. For intersecting separatrices, a possible violation of a normal hyperbolicity condition complicates the analysis by preventing the use of a persistence and smoothness theory for compact normally hyperbolic invariant manifolds and their local stable and unstable manifolds. For certain classes of multi-degree-of-freedom flows, however, a local persistence and smoothness result is straightforward, and we study the global implications of such a local result. In particular, we find codimension-one partial barriers and turnstile boundaries associated with each partially destroyed separatrix. From the collection of partial barriers and turnstiles follows a rich phase space partitioning and transport formalism to describe the dynamics amongst the various degrees of freedom. A generalization of Wiggins' higher-dimensional Melnikov theory to codimension-one surfaces in the multi-separatrix case allows one to uncover invariant manifold geometry. In the context of this perturbative analysis and detailed numerical computations, we study invariant manifold geometry, phase space partitioning, and phase space transport, with particular attention payed to the role of a vanishing frequency in the limit approaching the intersection of the partially destroyed separatrices. The class of flows under consideration includes flows of basic physical relevance, such as those describing scattering phenomena. The analysis is illustrated in the context of a detailed study of a 3-degree-of-freedom scattering problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.