Abstract
In this paper, we study the multiplicity of positive solutions for a class of Schrödinger-Poisson systems. Working in a variational setting, we prove the existence and multiplicity of positive solutions for the system when the Plank’s constant is small and the potential satisfies some suitable conditions. We show that the number of positive solutions depends on the profile of the potential and that each solution concentrates around its corresponding global minimum point of the potential in the semi-classical limit. We also study the exponential decay.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.