Abstract

We study the transverse self-structuring of cold atomic clouds with effective atomic interactions mediated by a coherent driving beam retroreflected by means of a single mirror. The resulting self-structuring due to optomechanical forces is much richer than that of an effective-Kerr medium, displaying hexagonal, stripe and honeycomb phases depending on the interaction strength parametrized by the linear susceptibility. Phase domains are described by Ginzburg-Landau amplitude equations with real coefficients. In the stripe phase the system recovers inversion symmetry. Moreover, the subcritical character of the honeycomb phase allows for light-density feedback solitons functioning as self-sustained dark atomic traps with motion controlled by phase gradients in the driving beam.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call