Abstract

Electronic structure calculations on a conjugated polymer chain by Hartree-Fock and density functional theory show a sequence of self-localized states, which stand in contrast to the single self-localized soliton state described by the Su-Schrieffer-Heeger model Hamiltonian. An extended Hubbard model, which treats electron-electron interactions up to second neighbors, is constructed to demonstrate that the additional states arise from a strong band-bending effect due to the presence of localized electric fields of charged solitons. We suggest the optical response of these electronic states may be associated with the near-edge oscillations observed in photo-induced absorption spectra. Our calculations indicate further that in the presence of counterions, the additional localized states continue to exist. Implications regarding soliton mobility and high-resolution ion sensing are briefly discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call