Abstract
In this work, a method to reduce increase in optical density (OD) caused by multiple scanning in radiochromic film dosimetry in combination with a flatbed scanner is presented. Gafchromic EBT3 films are scanned with Epson Pro 1680 Expression scanner and time intervals of 15 minutes and 30 minutes are observed between consecutive scans to reduce the increase in temperature of the scanner. The maximum variations in OD after consecutive scans are calculated and compared to the values obtained for scans without interruption. For film irradiated to 3 Gy, a time interval of 15 minutes between two successive scans leads to a reduction of the OD increase of 56.2% compared to when films are scanned without interruption. Reductions of OD increase of 86.72% and 78.72% respectively for film irradiated to 1 Gy and 2 Gy are obtained when a time interval of 30 minutes is left between two successive scans. These results show that when time intervals are observed between consecutive scans, the increase in OD has significantly reduced. However, the method has the drawback of increasing the time needed to perform radiochromic film dosimetry.
Highlights
Available detectors used in medical applications give the possibility of obtaining the value of the absorbed dose at one point
For film irradiated to 3 Gy, a time interval of 15 minutes between two successive scans leads to a reduction of the optical density (OD) increase of 56.2% compared to when films are scanned without interruption
Reductions of OD increase of 86.72% and 78.72% respectively for film irradiated to 1 Gy and 2 Gy are obtained when a time interval of 30 minutes is left between two successive scans
Summary
Available detectors used in medical applications give the possibility of obtaining the value of the absorbed dose at one point. Another advantage is that they can be used in combination with a flatbed document scanner as densitometer [9] [10]. Paelinck et al [12] studied the same phenomenon on Gafchromic EBT films using an Epson Pro 1680 Expression flatbed scanner and attributed the increase of the OD to the UV component of the light of the scanner lamp
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Medical Physics, Clinical Engineering and Radiation Oncology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.