Abstract
The non-equilibrium thermodynamics of a gas inside a piston is a conceptually simple problem where analytic results are rare. For example, it is hard to find in the literature analytic formulas that describe the heat exchanged with the reservoir when the system either relaxes to equilibrium or is compressed over a finite time. In this paper we derive this kind of analytic formula. To achieve this result, we take the equations derived by Cerino et al (2015 Phys. Rev. E 91 032128) describing the dynamic evolution of a gas-piston system, we cast them in a dimensionless form, and we solve the dimensionless equations with the multiple scales expansion method. With the approximated solutions we obtained, we express in a closed form the heat exchanged by the gas-piston system with the reservoir for a large class of relevant non-equilibrium situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Statistical Mechanics: Theory and Experiment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.