Abstract
AbstractNew temporal and spatial discretization methods are developed for multiple scale structural dynamic problems. The concept of fast and slow time scales is introduced for the temporal discretization. The required time step is shown to be dependent only on the slow time scale, and therefore, large time steps can be used for high frequency problems. To satisfy the spatial counterpart of the requirement on time step constraint, finite‐spectral elements and finite wave elements are developed. Finite‐spectral element methods combine the usual finite elements with the fast convergent spectral functions to obtain a faster convergence rate; whereas, finite wave elements are developed in parallel to the temporal shifting technique. Therefore, the spatial resolution is increased substantially. These methods are especially applicable to structural acoustics and linear space structures. Numerical examples are presented to illustrate the effectiveness of these methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.