Abstract

Predicting the impact on the subsurface and groundwater of a pollutant source, such as municipal solid waste (MSW) incineration ash, requires a knowledge of the so-called "source term". The source term describes the manner in which concentrations in dissolved elements in water percolating through waste evolve over time, for a given percolation scenario (infiltration rate, waste source dimensions, etc.). If the source term is known, it can be coupled with a model that simulates the fate and transport of dissolved constituents in the environment of the waste (in particular in groundwater), in order to calculate potential exposures or impacts. The standardized laboratory upward-flow percolation test is generally considered a relevant test for helping to define the source term for granular waste. The LIMULE project (Multiple-Scale Leaching) examined to what extent this test, performed in very specific conditions, could help predict the behaviour of waste at other scales and for other conditions of percolation. Three distinct scales of percolation were tested: a laboratory upward-flow percolation column (30 cm), lysimeter cells (1-2 m) and a large column (5 m) instrumented at different depths. Comparison of concentration data collected from the different experiments suggests that for some non-reactive constituents (Cl, Na, K, etc.), the liquid versus solid ratio (L/S) provides a reasonable means of extrapolating from one scale to another; if concentration data are plotted versus this ratio, the curves coincide quite well. On the other hand, for reactive elements such as chromium and aluminium, which are linked by redox reactions, the L/S ratio does not provide a means of extrapolation, due in particular to kinetic control on reactions. Hence extrapolation with the help of coupled chemistry-transport modelling is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.