Abstract

We report measurements of switching current distribution (SWCD) from a phase-diffusion branch (PDB) to a quasiparticle-tunneling branch (QTB) as a function of temperature in a cuprate-based intrinsic Josephson junction. Contrary to the thermal-activation model, the width of the SWCD increases and the corresponding switching rate shows a nonlinear behavior with a negative curvature in a semilogarithmic scale with decreasing temperature down to 1.5 K. Based on the multiple-retrapping model, we quantitatively demonstrate that the frequency-dependent junction quality factor, representing the energy dissipation in a phase-diffusion regime, determines the observed temperature dependence of the SWCD and the switching rate. We also show that a retrapping process from the QTB to the PDB is related to the low-frequency limit damping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.