Abstract

The aim of the study was to develop a new HPLC method for direct chiral separation of Ofloxacin enantiomers using polar non-aqueous mobile phase by application of response surface methodology. Rotatable central composite design (CCD) with eight factorial points, six axial points and six replications in central point was used to evaluate the influence of three independent variables (concentration of methanol, diethylamine and flow rate) on the output responses (capacity factor of first peak, tailing factors of both the enantiomers, resolution between the Ofloxacin enantiomers, retention time of the last peak and chromatographic optimization function). Further, CCD data were combined with multiple response optimization in order to obtain a set of optimal experimental conditions (% methanol/hexane/acetonitrile-43.33/10/46.62 (v/v), % acetic acid/diethylamine-0.4/0.2 and flow rate as 1.4 mL min−1) leading to the most desirable compromise between resolution and analysis time. The method demonstrated good correlation between observed and predicted responses. The developed method was validated according to ICH guidelines and applied for quantitative analysis of two commercially available tablets Zenoflox (Ofloxacin) and Glevo (Levofloxacin). Good agreement was found between the assay results and the label claim of the marketed formulations by showing good %recovery and %CV. The study resulted in a better chromatographic system for the determination of Ofloxacin enantiomers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call