Abstract

In this study, a novel energy-efficient resource allocation (RA) scheme is proposed for device-to-device communication underlaying cellular networks from an end-to-end energy-efficient perspective. The time slot, sub-channel (frequency) and power resources are allocated together to optimise the energy-efficiency (EE) performance. Furthermore, to match the practical communication situations and achieve the best EE performance, the time–frequency resource units (RUs) are used in a complete-shared pattern. Then, the multiuser interference is very severe and complex. With all these considerations, the energy-efficient RA problem is formulated as a mixed integer and non-convex optimisation problem, which is an non-deterministic polynominal (NP)-hard problem and extremely difficult to solve. To obtain a desirable solution with a reasonable computation cost, the authors tackle this problem with two steps. Step 1, the RU allocation policy is obtained via a greedy search method, and the original optimisation problem is reduced to a non-convex fractional programming problem. Step 2, exploiting the properties of fractional programming and after some manipulations, they transform the reduced problem to a concave optimisation problem, and obtain the sub-optimal power allocation strategy through the Lagrange dual approach. Finally, simulation results are presented to validate the effectiveness of the proposed RA scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.