Abstract

In this study, a novel energy-efficient resource allocation (RA) scheme is proposed for device-to-device communication underlaying cellular networks from an end-to-end energy-efficient perspective. The time slot, sub-channel (frequency) and power resources are allocated together to optimise the energy-efficiency (EE) performance. Furthermore, to match the practical communication situations and achieve the best EE performance, the time–frequency resource units (RUs) are used in a complete-shared pattern. Then, the multiuser interference is very severe and complex. With all these considerations, the energy-efficient RA problem is formulated as a mixed integer and non-convex optimisation problem, which is an non-deterministic polynominal (NP)-hard problem and extremely difficult to solve. To obtain a desirable solution with a reasonable computation cost, the authors tackle this problem with two steps. Step 1, the RU allocation policy is obtained via a greedy search method, and the original optimisation problem is reduced to a non-convex fractional programming problem. Step 2, exploiting the properties of fractional programming and after some manipulations, they transform the reduced problem to a concave optimisation problem, and obtain the sub-optimal power allocation strategy through the Lagrange dual approach. Finally, simulation results are presented to validate the effectiveness of the proposed RA scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.