Abstract
In the precision marketing of a new product, it is a challenge to allocate limited resources to the target customer groups with different characteristics. We presented a framework using distance-based algorithm, K-Nearest-Neighbour, and support vector machine to capture customers’ preference towards promotion channel. Additionally, on-line learning programming was combined with machine learning strategies to fit a dynamic environment, evaluating its performance through a parsimonious model of minimum regret. A resource optimization model was proposed using classification results as input. In particular, we collected data from a loan agency that offers loans to small business merchants. Our sample contained 525,919 customers who will be introduced to a new financial product. By simulating different scenarios between resources and demand, we showed an up to 22.42% increase in the number of expected merchants when K-NN was performed with optimal resource allocation strategy. Our results also show that K-NN is the most stable method to perform classification, and that distance-based algorithm has the most efficient adoption with on-line learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.