Abstract

Achieving narrow-bandwidth emission and high external quantum efficiency (EQE) simultaneously is a challenge for next-generation blue-emitting organic light-emitting diodes (OLEDs). In this study, novel multiple-resonance thermally activated delayed fluorescence (MR-TADF) emitters are developed by fusing an indolocarbazole unit with two carbazole skeletons using para-oriented nitrogen atoms. The resulting rigid and planar π-system without electron-accepting atoms exhibits pure blue photoluminescence at 470nm, reaching a 100% quantum yield with a full-width-at-half-maximum (FWHM) of 25nm. Higher-level quantum chemistry calculations confirm an MR effect within the extended π-conjugation and an enhanced triplet-to-singlet crossover (104 s-1 ) through a reduced energy gap (ΔEST ) coupled with large spin-vibronic coupling mediated by low-lying triplet excited states. An OLED fabricated using the MR-TADF emitter with CIE color coordinates of (0.12, 0.16) exhibits a record high EQE of 30.9% and a small FWHM of 23nm. With further optimization of the device structure, a high EQE of 33.8% is achieved without additional outcoupling enhancements owing to the near-perfect horizontal alignment of the emitting dipoles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.