Abstract

Volumetric lung tumor segmentation and accurate longitudinal tracking of tumor volume changes from computed tomography images are essential for monitoring tumor response to therapy. Hence, we developed two multiple resolution residually connected network (MRRN) formulations called incremental-MRRN and dense-MRRN. Our networks simultaneously combine features across multiple image resolution and feature levels through residual connections to detect and segment the lung tumors. We evaluated our method on a total of 1210 non-small cell (NSCLC) lung tumors and nodules from three data sets consisting of 377 tumors from the open-source Cancer Imaging Archive (TCIA), 304 advanced stage NSCLC treated with anti- PD-1 checkpoint immunotherapy from internal institution MSKCC data set, and 529 lung nodules from the Lung Image Database Consortium (LIDC). The algorithm was trained using 377 tumors from the TCIA data set and validated on the MSKCC and tested on LIDC data sets. The segmentation accuracy compared to expert delineations was evaluated by computing the dice similarity coefficient, Hausdorff distances, sensitivity, and precision metrics. Our best performing incremental-MRRN method produced the highest DSC of 0.74 ± 0.13 for TCIA, 0.75±0.12 for MSKCC, and 0.68±0.23 for the LIDC data sets. There was no significant difference in the estimations of volumetric tumor changes computed using the incremental-MRRN method compared with the expert segmentation. In summary, we have developed a multi-scale CNN approach for volumetrically segmenting lung tumors which enables accurate, automated identification of and serial measurement of tumor volumes in the lung.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.