Abstract

Italian ryegrass (Lolium multiflorum L.), a cross-pollinated grass, is gradually becoming a predominant weed in wheat fields in China and is evolving resistance to many groups of herbicides. The aim of this study is to determine the resistance levels of a single L. multiflorum population from a wheat field in Henan Province China, to three modes of action (MoAs) of herbicides and to further characterize the potential resistance mechanisms. This L. multiflorum population evolved multiple herbicide resistances to pyroxsulam [acetolactate synthase (ALS)], pinoxaden [acetyl-CoA carboxylase (ACCase)] and isoproturon [photosystem II (PSII)]. Target-site resistance (TSR) mutations (Pro-197-Gln, Pro-197-Thr, and Trp-574-Leu) and non-target-site resistance (NTSR) mediated by cytochrome P450 monooxygenase (CYP450) genes were associated with pyroxsulam resistance. Pinoxaden resistance was conferred by two TSR mutations, which referred to a rare Ile-2041-Val mutation and a common Ile-1781-Leu mutation but with two different nucleotide substitutions (CTA/TTA). CYP450- and glutathione-S-transferase (GST)-mediated resistances were the main resistance mechanisms for this multiple herbicide-resistant (MHR) population to the PSII inhibitor isoproturon. This is the first case of a single L. multiflorum population evolving multiple resistance to three herbicide MoAs (ALS, ACCase and PSII) in China. Diverse resistance mechanisms including TSR and NTSR mean L. multiflorum exhibits a high degree of resistance plasticity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call