Abstract

Penoxsulam is an important herbicide for the control of Echinochloa crus-galli (L.) P. Beauv. Two resistant populations 17GA (R1) and 16NXB (R2) showed 17- and 3-fold resistance to penoxsulam, respectively. A known resistance mutation of Trp-574-Leu in ALS gene and enhanced rates of penoxsulam metabolism likely involving GST contribute to penoxsulam resistance in R1 population. This population had resistance to the ALS-inhibitors pyribenzoxim and bispyribac‑sodium and the auxin herbicide quinclorac, but was susceptible to ACCase-inhibitors quizalofop-p-ethyl and cyhalofop-butyl. No known mutations in the ALS gene conferring target site resistance to ALS-inhibiting herbicides were presented in R2 population. However, penoxsulam metabolism in R2 plants was about 4-fold greater than in susceptible population 14YC (S0) plants. The enzyme inhibitors piperonyl butoxide, malathion and 4-chloro-7-nitrobenzoxadiazole reversed penoxsulam resistance in this population. GST and P450 enzyme activities and the genes of GST1–1, GST1–2, GST1–3, CYP81A18, CYP81A12, CYP81A21 were increased significantly in R2 population. These results indicate that multiple resistance mechanisms had occurred in E. crus-galli populations in central China and resistance needs to be managed effectively by diverse chemical and non-chemical methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.