Abstract

In this paper, we show how the use of multiple content representations and their fusion can improve the performance of content-based image retrieval systems. We consider the case of texture and propose a new algorithm for texture retrieval based on multiple representations and their results fusion. Texture content is modeled using two different models: the well-known autoregressive model and a perceptual model based on perceptual features such as coarseness and directionality. In the case of the perceptual model, two viewpoints are considered: perceptual features are computed based on the original images viewpoint and on the autocovariance function viewpoint (corresponding to original images). So we consider a total of three content representations. The similarity measure used is based on Gower's index of similarity. Simple results of the fusion models are used to merge search results returned by different representations. Experimentations and benchmarking carried out on the well-known Brodatz database show a drastic improvement in search effectiveness with the fused model without necessarily altering their efficiency in an important way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.