Abstract

Drosophila melanogaster ribosomal DNA (rDNA) transcriptional units are separated by nontranscribed spacer (NTS) segments consisting of tandemly arranged repeats 95, 330, and 240 base pairs long. NTS sequences stimulate transcription from the rRNA precursor (pre-rRNA) promoter. Primer extension analysis of RNA from cells cotransfected with plasmids carrying NTS sequences of various lengths shows that the activity of the pre-rRNA promoter is directly correlated with the number of 240-base-pair repeats; NTS sequences upstream of these units also stimulate pre-rRNA transcription. The NTS effect might depend upon transcription from duplicated promoters present within the 240- and 330-base-pair repeats. The strength of the pre-RNA promoter correlates in each construct with the level of spacer transcription. The action of spacer sequences, although able to take place over a large distance, is not independent of orientation: stimulation of pre-rRNA transcription is abolished in plasmids carrying inverted NTS segments. Removal of a putative transcription termination site located upstream of the pre-rRNA promoter has no effect on pre-rRNA initiation nor does it substantially alter spacer enhancement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.