Abstract

Density functional theory calculations in conjunction with statistical mechanical arguments are performed on the rutile IrO2 (110) facet in order to characterize multiple reaction pathways on the surface at the highest active limit (the stoichiometric surface with all metal sites available) and at the lowest active limit (the oxygen-terminated surface). Alternative pathways to the oxygen evolution reaction (OER) are found, with multiple pathways determined at each step of the four proton-coupled electron transfer reaction. Of particular interest is the detailed characterization of a co-adsorption pathway utilizing neighboring, adsorbed O, OH species in order to evolve oxygen; activation energies of this pathway are <0.5 eV and therefore easily surmountable at the high operating potentials of OER. We also determined that surface Ir atoms can potentially participate in deprotonating an OOH* intermediate; the activation energy to this is 0.67 eV on the oxygen-terminated surface. These theoretical findings explain in part the high activity present in iridium oxide catalysts and also provide insight into the mechanistic pathways available on metal oxide catalysts, which may require the concerted interaction of nearest neighbor co-adsorbates to produce chemicals of interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.