Abstract

O-linked N-acetylglucosamine (O-GlcNAc) is a post-translational modification regulating proteins involved in a variety of cellular processes and diseases. Unfortunately, O-GlcNAc remains challenging to detect and quantify by shotgun mass spectrometry (MS) where it is time-consuming and tedious. Here, we investigate the potential of Multiple Reaction Monitoring Mass Spectrometry (MRM-MS), a targeted MS method, to detect and quantify native O-GlcNAc modified peptides without extensive labeling and enrichment. We report the ability of MRM-MS to detect a standard O-GlcNAcylated peptide and show that the method is robust to quantify the amount of O-GlcNAcylated peptide with a method detection limit of 3 fmol. In addition, when diluted by 100-fold in a trypsin-digested whole cell lysate, the O-GlcNAcylated peptide remains detectable. Next, we apply this strategy to study glycogen synthase kinase-3 beta (GSK-3β), a kinase able to compete with O-GlcNAc transferase and modify identical site on proteins. We demonstrate that GSK-3β is itself modified by O-GlcNAc in human embryonic stem cells (hESC). Indeed, by only using gel electrophoresis to grossly enrich GSK-3β from whole cell lysate, we discover by MRM-MS a novel O-GlcNAcylated GSK-3β peptide, bearing 3 potential O-GlcNAcylation sites. We confirm our finding by quantifying the increase of O-GlcNAcylation, following hESC treatment with an O-GlcNAc hydrolase inhibitor. This novel O-GlcNAcylation could potentially be involved in an autoinhibition mechanism. To the best of our knowledge, this is the first report utilizing MRM-MS to detect native O-GlcNAc modified peptides. This could potentially facilitate rapid discovery and quantification of new O-GlcNAcylated peptides/proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.