Abstract

无人机具有成本低、机动性强等优势特性, 近年来成为了军用和民用领域中备受青睐的对象. 为了使无人机能够快速、稳定、高效地完成不同的任务, 安全、可靠的轨迹控制至关重要. 本文针对无人机群赋能的多辐射源追踪问题, 构建了多约束条件下的无人机群轨迹优化模型, 提出了估计、匹配、定位、追踪框架, 并设计了一种基于深度强化学习的无人机群飞行轨迹优化算法. 首先, 采用深度神经网络估计信道模型, 得到接收信号强度和距离之间的映射关系; 其次, 采用交互式方法生成接收信号强度矩阵, 计算出对应的距离矩阵并得到无人机与辐射源匹配方案; 然后, 采用多球交会定位方法, 结合接收信号强度和距离之间的映射关系计算出辐射源的参考位置; 进一步, 将原始优化问题转换为马尔科夫决策过程, 并将辐射源定位信息引入强化学习中, 设计高效的无人机飞行轨迹优化算法. 此外,引入群体熵对所提算法的智能性进行了分析和评估. 最后, 仿真结果对所提算法的平均飞行时间、任务完成率、智能性以及无人机群的轨迹分别进行了分析, 验证了所提方法的有效性.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.