Abstract

Multiple-quantum nuclear-magnetic-resonance techniques are used to study the distribution of hydrogen in hydrogenated amorphous silicon. Using the fact that multiple-quantum excitation is limited by the size of the dipolar-coupled spin system, we show that the predominant bonding environment for hydrogen is a cluster of four to seven atoms. For device-quality films, the concentration of these cluster defects increases with increasing hydrogen content. At very high hydrogen content, the clusters are replaced with a continuous network of silicon-hydrogen bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.