Abstract

Excitation of multiple quantum coherence in dipolar coupled spin systems is usually accomplished with a two-quantum multiple pulse sequence which can be time reversed by means of a 90° phase shift. The application of such an excitation scheme to a spin system in thermal equilibrium excites only even orders of multiple quantum coherence. We demonstrate here time reversible pulse sequences that excite all orders of coherence by creating a pure one-quantum average hamiltonian. We also describe pulse schemes which can be used to create pure one- or two-quantum average hamiltonians with variable scaling between +1 and −1. These excitation schemes are relevant to the study of spin clustering by multiple quantum NMR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.