Abstract

In this paper, the ψ -type stability and robustness of recurrent neural networks are investigated by using the differential inequality. By utilizing ψ -type functions combined with the inequality techniques, some sufficient conditions ensuring ψ -type stability and robustness are derived for linear neural networks with time-varying delays. Then, by choosing appropriate Lipschitz coefficient in subregion, some algebraic criteria of the multiple ψ -type stability and robust boundedness are established for the delayed neural networks with time-varying delays. For special cases, several criteria are also presented by selecting parameters with easy implementation. The derived results cover both ψ -type mono-stability and multiple ψ -type stability. In addition, these theoretical results contain exponential stability, polynomial stability, and μ -stability, and they also complement and extend some previous results. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed criteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call