Abstract
AbstractSimultaneous prediction intervals for forecasts from time series models that contain L (L ≤ 1) unknown future observations with a specified probability are derived. Our simultaneous intervals are based on two types of probability inequalities, i.e. the Bonferroni‐ and product‐types. These differ from the marginal intervals in that they take into account the correlation structure between the forecast errors. For the forecasting methods commonly used with seasonal time series data, we show how to construct forecast error correlations and evaluate, using an example, the simultaneous and marginal prediction intervals. For all the methods, the simultaneous intervals are accurate with the accuracy increasing with the use of higher‐order probability inequalities, whereas the marginal intervals are far too short in every case. Also, when L is greater than the seasonal period, the simultaneous intervals based on improved probability inequalities will be most accurate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.