Abstract
This paper makes a study on the existence of positive solution top-Laplacian dynamic equations on time scales𝕋. Some new sufficient conditions are obtained for the existence of at least single or twin positive solutions by using Krasnosel'skii's fixed point theorem and new sufficient conditions are also obtained for the existence of at least triple or arbitrary odd number positive solutions by using generalized Avery-Henderson fixed point theorem and Avery-Peterson fixed point theorem. As applications, two examples are given to illustrate the main results and their differences. These results are even new for the special cases of continuous and discrete equations, as well as in the general time-scale setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.