Abstract

Remaining useful life prediction plays an important role in ensuring the safety, availability, and efficiency of various engineering systems. In this paper, we propose a flexible Bayesian multiple-phase modeling approach to characterize degradation signals for prognosis. The priors are specified with a novel stochastic process and the multiple-phase model is formulated to a novel state-space model to facilitate online monitoring and prediction. A particle filtering algorithm with stratified sampling and partial Gibbs resample-move strategy is developed for online model updating and residual life prediction. The advantages of the proposed method are demonstrated through extensive numerical studies and real case studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.