Abstract
We present a multiple pedestrian tracking method for monocular videos captured by a fixed camera in an interacting multiple model (IMM) framework. Our tracking method involves multiple IMM trackers running in parallel, which are tied together by a robust data association component. We investigate two data association strategies which take into account both the target appearance and motion errors. We use a 4D color histogram as the appearance model for each pedestrian returned by a people detector that is based on the histogram of oriented gradients features. Short-term occlusion problems and false negative errors from the detector are dealt with using a sliding window of video frames, where tracking persists in the absence of observations. Our method has been evaluated, and compared both qualitatively and quantitatively with four state-of-the-art visual tracking methods using benchmark video databases. The experiments demonstrate that, on average, our tracking method outperforms these four methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.