Abstract

A domain binding model was developed for explaining the multiple peak chromatograms obtained in the high-performance liquid chromatography of pure fibrinogen on a DEAE polymethacrylate column using different gradients of ammonium chloride. The different peaks for fibrinogen result from the binding of either the D or E domain of fibrinogen to the packing material. This was confirmed by comparing the retention times of the chromatograms for fibrinogen, fragment D 1 and fragment E. Native and denatured forms of fibrinogen are proposed to be important to fibrinogen's interaction with the column, hiding or exposing the E domain, respectively. Different gradient speeds resolve a different number of peaks for fibrinogen, with slow gradients yielding essentially one peak and fast gradients 10 or more peaks. Temperature studies were done to confirm the model. Different commercial sources of fibrinogen showed different proportions of native and denatured/degraded forms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.