Abstract
We propose a multiple parameter identification method for vanadium redox flow batteries (VRFBs) to estimate the model parameter in a VRFB model. The proposed method consists of an evaluation of identifiability based on the Fisher Information Matrix (FIM) to determine the best subset of model parameters to be identified, a numerical modeling of semi-two-dimensional steady-state VRFB model, and a genetic algorithm to estimate optimal model parameters. In the optimization, we introduce a fitness function involving the mean square errors of the voltage between available experimental data and results of the VRFB model. We validate the proposed method by calculating confidence intervals of identifying parameters in the subset based on the FIM from the state of charge-voltage data obtained from a small VRFB cell experiment; we compare the curves of the identified-parameter model with those obtained experimentally. Further, we demonstrate the robustness of the proposed method through its application to a kW-scale VRFB stack utilizing advanced mixed electrolytes. The capacity-voltage curves predicted by the identified-parameter model show good agreement with those obtained experimentally under various operating conditions, with mean relative errors of less than 1.9%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.