Abstract
BackgroundUridine 5'-triphosphate (UTP) and uridine 5'-diphosphate (UDP) act via P2Y receptors to evoke contraction of rat pulmonary arteries, whilst adenosine 5'-triphosphate (ATP) acts via P2X and P2Y receptors. Pharmacological characterisation of these receptors in intact arteries is complicated by release and extracellular metabolism of nucleotides, so the aim of this study was to characterise the P2Y receptors under conditions that minimise these problems.MethodsThe perforated-patch clamp technique was used to record the Ca2+-dependent, Cl- current (ICl,Ca) activated by P2Y receptor agonists in acutely dissociated smooth muscle cells of rat small (SPA) and large (LPA) intrapulmonary arteries, held at -50 mV. Contractions to ATP were measured in isolated muscle rings. Data were compared by Student's t test or one way ANOVA.ResultsATP, UTP and UDP (10-4M) evoked oscillating, inward currents (peak = 13–727 pA) in 71–93% of cells. The first current was usually the largest and in the SPA the response to ATP was significantly greater than those to UTP or UDP (P < 0.05). Subsequent currents tended to decrease in amplitude, with a variable time-course, to a level that was significantly smaller for ATP (P < 0.05), UTP (P < 0.001) and UDP (P < 0.05) in the SPA. The frequency of oscillations was similar for each agonist (mean≈6–11.min-1) and changed little during agonist application. The non-selective P2 receptor antagonist suramin (10-4M) abolished currents evoked by ATP in SPA (n = 4) and LPA (n = 4), but pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) (10-4M), also a non-selective P2 antagonist, had no effect (n = 4, 5 respectively). Currents elicited by UTP (n = 37) or UDP (n = 14) were unaffected by either antagonist. Contractions of SPA evoked by ATP were partially inhibited by PPADS (n = 4) and abolished by suramin (n = 5). Both antagonists abolished the contractions in LPA.ConclusionAt least two P2Y subtypes couple to ICl,Ca in smooth muscle cells of rat SPA and LPA, with no apparent regional variation in their distribution. The suramin-sensitive, PPADS-resistant site activated by ATP most resembles the P2Y11 receptor. However, the suramin- and PPADS-insensitive receptor activated by UTP and UDP does not correspond to any of the known P2Y subtypes. These receptors likely play a significant role in nucleotide-induced vasoconstriction.
Highlights
Uridine 5'-triphosphate (UTP) and uridine 5'-diphosphate (UDP) act via P2Y receptors to evoke contraction of rat pulmonary arteries, whilst adenosine 5'-triphosphate (ATP) acts via P2X and P2Y receptors
The suraminsensitive, PPADS-resistant site activated by ATP most resembles the P2Y11 receptor
P2Y receptor agonists induce oscillating inward currents ATP, UTP and UDP (10-4 M) each evoked inward currents in most SPA (n = 118) and LPA (n = 117) smooth muscle cells held at -50 mV (ATP-91%/88%, UTP-91%/93%, UDP-71%/81%, SPA/ LPA respectively)
Summary
Uridine 5'-triphosphate (UTP) and uridine 5'-diphosphate (UDP) act via P2Y receptors to evoke contraction of rat pulmonary arteries, whilst adenosine 5'-triphosphate (ATP) acts via P2X and P2Y receptors. Pharmacological characterisation of these receptors in intact arteries is complicated by release and extracellular metabolism of nucleotides, so the aim of this study was to characterise the P2Y receptors under conditions that minimise these problems. In a previous study [6] we showed that UTP and UDP both act via two P2Y receptors to evoke contraction of rat isolated pulmonary arteries. UDP is a potent agonist at the P2Y6 receptor only [16,17]. mRNA for this subtype and suramin-insensitive contractions to UDP in pulmonary arteries have been demonstrated [12], but the lack of effect of PPADS against the contractions evoked by UDP in our previous study are inconsistent with the P2Y6 receptor
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.