Abstract
In order to get more comprehensive and accurate knowledge from the Semantic Web, it is essential to design an effective method to extract semantic data from the web and documents. However, as a crucial topic of semantic information extraction, relation extraction is a major challenge in knowledge base construction. Existing methods perform poorly on texts in the open domain due to their complex structure; this paper proposes a method named multiple order semantic relation extraction (MOSRE), which applies for multiple orders, a conceptual expression used in formal logistics, to build semantic patterns for extracting information from hybrid unstructured texts in the open domain with deep semantic analyses. Specifically, the proposed method automatically constructs a multiple order semantic tree from complex natural sentences and converts semantic information into a binary structure. Instead of constructing a large amount of pattern sets for comparing binary semantics between entities, MOSRE splits and reconstructs sentences into a strict hierarchical binary structure with combination rules in order to extract as much semantic information as possible. The extracted triples are then processed into several entity relations in the format 〈subject, relational label, object〉 after named entity recognition and refinement. MOSRE is validated by test results on two different datasets, achieving F1 values of 83.8% on SENT500 and 35.5% on KBP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.