Abstract

Hepatitis B core antigen (HBcAg) can self-assemble into virus-like particles (VLPs) when expressed in Escherichia coli. We optimized the different of the expression plasmid pBV220, including the ribosome bind site (RBS), spacer region, promoter and replication origin (ori), as well as the hbc gene dosage, to enhance HBcAg transcription and translation in E. coli. The optimized construct with a customized RBS6, 6 nt spacer, T7 promoter and pUCori significantly increased the levels of HBc36GFP fusion protein to 3.4-folds compared to the control. Thereafter, we substituted hbc36gfp gene with different copies of the hbc gene and tested the effects of gene dosage on HBcAg expression. The HBcAg-VLPs yield obtained using an engineered strain with three copies of hbc was 842.1 ± 46.8 μg/mL, which was 2.2-folds higher compared to that in the control strain. Thus, our study provides a simple and effective strategy for improving HBcAg expression in E. coli. Since the HBcAg-VLPs are promising carriers for presenting foreign antigen epitopes, an in vitro expression system that can generate high levels of HBcAg-VLPs can serve as a promising tool for developing novel HBV vaccines and drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.