Abstract

The poreplate sensilla of honeybees are equipped with multiple olfactory receptor neurons (ORNs), which innervate glomeruli of the antennal lobe (AL). We investigated the axonal projection pattern in glomeruli of the AL (glomerular pattern), formed by the multiple ORNs of individual poreplate sensilla. We used the different glomerular patterns to draw conclusions about the equipment of poreplate sensilla with different ORN types. ORNs of single poreplate sensilla were stained and analyzed by laser-scanning confocal microscopy and 3D software (AMIRA). In 13 specimens we found between 7 and 23 ORNs. This is in accordance with data found in the literature (5-35 ORNs) suggesting that all ORNs of the single poreplate sensilla were stained. The ORNs innervate the AL via all four sensory tracts (T1-T4), and glomeruli of the anterior part of the AL are more often innervated. Each ORN innervates a single glomerulus (uniglomerular), and all ORNs of one poreplate sensillum project to different glomeruli. Visual inspection and individual identification of glomeruli, based on the honeybee digital AL atlas, were used to evaluate mapping of glomeruli by a rigid transformation of the experimental ALs onto a reference AL. ORNs belonging to individual poreplate sensilla form variable glomerular patterns, and we did not find a common organization of glomerular patterns. We conclude that poreplate sensilla are equipped with different ORN types but that the same ORN types can be found in different poreplate sensilla. The equipment of poreplate sensilla with ORNs is overlapping. The mapping of glomeruli by rigid transformation is revealed to be a powerful tool for comparative neuroanatomy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call