Abstract

This research focuses on utilizing injection moulding to assess defects in plastic products, including sink marks, shrinkage, and warpages. Process parameters, such as pure cooling time, mould temperature, melt temperature, and pressure holding time, are carefully selected for investigation. A full factorial design of experiments is employed to identify optimal settings. These parameters significantly affect the physical and mechanical properties of the final product. Soft computing methods, such as finite element (FE), help mitigate behaviour by considering different input parameters. A CAD model of a dashboard component integrates into an FE simulation to quantify shrinkage, warpage, and sink marks. Four chosen parameters of the injection moulding machine undergo comprehensive experimental design. Decision tree, multilayer perceptron, long short-term memory, and gated recurrent units models are explored for injection moulding process modelling. The best model estimates defects. Multiple objectives particle swarm optimisation extracts optimal process parameters. The proposed method is implemented in MATLAB, providing 18 optimal solutions based on the extracted Pareto-Front.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.