Abstract
Abstract The paper presents a new system for ECG (ElectroCardioGraphy) signal recognition using different neural classifiers and a binary decision tree to provide one more processing stage to give the final recognition result. As the base classifiers, the three classical neural models, i.e., the MLP (Multi Layer Perceptron), modified TSK (Takagi-Sugeno-Kang) and the SVM (Support Vector Machine), will be applied. The coefficients in ECG signal decomposition using Hermite basis functions and the peak-to-peak periods of the ECG signals will be used as features for the classifiers. Numerical experiments will be performed for the recognition of different types of arrhythmia in the ECG signals taken from the MIT-BIH (Massachusetts Institute of Technology and Boston’s Beth Israel Hospital) Arrhythmia Database. The results will be compared with individual base classifiers’ performances and with other integration methods to show the high quality of the proposed solution
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Mathematics and Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.