Abstract
Multiple myeloma (MM) is a clinical disorder characterized by aberrant plasma cell growth in the bone marrow microenvironment. Globally, the prevalence of MM has been steadily increasing at an alarming rate. In the United States, more than 30,000 cases will be diagnosed in 2024 and it accounts for about 2% of cancer diagnoses and more than 2% of cancer deaths, more than double the worldwide figure. Both symptomatic and active MM are distinguished by uncontrolled plasma cell growth, which results in severe renal impairment, anemia, hypercalcemia, and bone loss. Multiple drugs have been approved by the FDA and are now widely used in clinical practice for MM. Although triplet and quadruplet induction regimens, autologous stem cell transplantation (ASCT), and maintenance treatment are used, MM continues to be an incurable illness characterized by relapses that may occur at various phases of its progression. MM patients with frailty, extramedullary disease, plasma cell leukemia, central nervous system recurrence, functional high risk, and the elderly are among those with the greatest current unmet needs. The high cost of care is an additional challenge. MM cells are highly protein secretary cells and thus are dependent on the activation of certain translation pathways. MM also has a high chance of altering ribosomal protein-encoding genes like MYC mutation. In this article we discuss the importance of ribosome biogenesis in promoting MM and RNA polymerase I inhibition as an upcoming treatment with potential promise for MM patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.