Abstract

Multiple mycotoxins were tested in milled rice samples (n = 200) from traders at different milling points within the Mwea Irrigation Scheme in Kenya. Traders provided the names of the cultivar, village where paddy was cultivated, sampling locality, miller, and month of paddy harvest between 2018 and 2019. Aflatoxin, citrinin, fumonisin, ochratoxin A, diacetoxyscirpenol, T2, HT2, and sterigmatocystin were analyzed using ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS). Deoxynivalenol was tested using enzyme-linked immunosorbent assay (ELISA). Mycotoxins occurred in ranges and frequencies in the following order: sterigmatocystin (0–7 ppb; 74.5%), aflatoxin (0–993 ppb; 55.5%), citrinin (0–9 ppb; 55.5%), ochratoxin A (0–110 ppb; 30%), fumonisin (0–76 ppb; 26%), diacetoxyscirpenol (0–24 ppb; 20.5%), and combined HT2 + T2 (0–62 ppb; 14.5%), and deoxynivalenol was detected in only one sample at 510 ppb. Overall, low amounts of toxins were observed in rice with a low frequency of samples above the regulatory limits for aflatoxin, 13.5%; ochratoxin A, 6%; and HT2 + T2, 0.5%. The maximum co-contamination was for 3.5% samples with six toxins in different combinations. The rice cultivar, paddy environment, time of harvest, and millers influenced the occurrence of different mycotoxins. There is a need to establish integrated approaches for the mitigation of mycotoxin accumulation in the Kenyan rice.

Highlights

  • Rice (Oryza sativa L.) is an important food crop that contributes approximately 21% of world per capita caloric intake [1]

  • Mycotoxins of importance to human and livestock health were analyzed in rice samples (n = 200) that were collected in the major Kenyan rice-growing region of Mwea, Kirinyaga County (Table 1 and Figure 1)

  • The collected samples were milled grains of two rice cultivars, namely, Pishori and BW 196

Read more

Summary

Introduction

Rice (Oryza sativa L.) is an important food crop that contributes approximately 21% of world per capita caloric intake [1]. In Kenya, rice is the third most important cereal after maize and wheat and is cultivated as a semi-subsistence crop mainly by small-scale farmers [3]. The demand is increasing at an annual rate of 12% due to changes in consumer preference, population growth, urbanization, and other changes in lifestyles, which stipulate the need for less fuel and rapid cooking methods [3]. The increased rice demand implies that there is a need to adopt practices that enhance the quantity and quality of the grain to enhance food security and safety in the country

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.