Abstract

Acaricide resistant Rhipicephalus microplus populations have become a major problem for many cattle producing areas of the world. Pyrethroid resistance in arthropods is typically associated with mutations in domains I, II, III, and IV of voltage-gated sodium channel genes. In R. microplus, known resistance mutations include a domain II change (C190A) in populations from Australia, Africa, and South America and a domain III mutation (T2134A) that only occurs in Mexico and the U.S. We investigated pyrethroid resistance in cattle fever ticks from Texas and Mexico by estimating resistance levels in field-collected ticks using larval packet discriminating dose (DD) assays and identifying single nucleotide polymorphisms (SNPs) in the para-sodium channel gene that associated with resistance. We then developed qPCR assays for three SNPs and screened a larger set of 1,488 R. microplus ticks, representing 77 field collections and four laboratory strains, for SNP frequency. We detected resistance SNPs in 21 of 68 U.S. field collections and six of nine Mexico field collections. We expected to identify the domain III SNP (T2134A) at a high frequency; however, we only found it in three U.S. collections. A much more common SNP in the U.S. (detected in 19 of 21 field collections) was the C190A domain II mutation, which has never before been reported from North America. We also discovered a novel domain II SNP (T170C) in ten U.S. and two Mexico field collections. The T170C transition mutation has previously been associated with extreme levels of resistance (super-knockdown resistance) in insects. We found a significant correlation (r = 0.81) between the proportion of individuals in field collections that carried any two resistance SNPs and the percent survivorship of F1 larvae from these collections in DD assays. This relationship is accurately predicted by a simple linear regression model (R2 = 0.6635). These findings demonstrate that multiple mutations in the para-sodium channel gene independently associate with pyrethroid resistance in R. microplus ticks, which is likely a consequence of human-induced selection.

Highlights

  • Acaricide resistant Rhipicephalus microplus populations have become a major problem for many cattle producing areas of the world

  • We discovered resistance SNPs by querying sequences that were generated for the exons encoding domain II (n = 410) and domain III (n = 366) of the para-sodium channel gene from hundreds of wild R. microplus ticks designated as permethrin-resistant and susceptible by the larval packet discriminating dose (DD) assays

  • The San Felipe, Santa Luiza, and B&H Ranch laboratory strains are known to be resistant to permethrin, but the generations we genotyped ((F44), (F20), and (F6), respectively) were assessed for permethrin resistance using a different range of % active ingredient (AI) [24,34] and, as such, are not directly comparable to the LC99 and 2× LC99 DD data

Read more

Summary

Introduction

Acaricide resistant Rhipicephalus microplus populations have become a major problem for many cattle producing areas of the world. Pyrethroid resistance in arthropods is typically associated with mutations in domains I, II, III, and IV of voltage-gated sodium channel genes. In R. microplus, known resistance mutations include a domain II change (C190A) in populations from Australia, Africa, and South America and a domain III mutation (T2134A) that only occurs in Mexico and the U.S. Chemical control of arthropod pests is of great importance to agricultural production and human health. Commonly observed is resistance to pyrethroids, which has arisen in multiple lineages of insects and ticks [3,4,5] and represents a significant pest control problem worldwide. Pyrethroid resistance is based on multiple mutations in voltage-gated sodium channels that result in “knockdown resistance” (kdr) that prevents the channel deactivation activity caused by pyrethroids [6,7,8]. The mutations that underlie knockdown resistance (hereafter resistance SNPs) have been the catalyst for extensive research efforts in recent decades, and are among the most studied of any resistance mechanism [8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call