Abstract

The organophosphate (OP) resistance status in Rhipicephalus (Boophilus) microplus ticks collected from seventeen districts located in the northwestern Indian state, Punjab were characterized using three data sets (bioassay, biochemical and molecular assays). Adult immersion test (AIT) was adopted and the resistance factors (RF) for the field isolates were determined. Resistance to malathion was detected in 12 isolates among which 11 showed level I resistance status while level II status was recorded in one isolate (RF of 5.35). To understand the possible mechanism of resistance development, acetylcholinesterase (AChE) activity and gene sequences of the AChE3 were analyzed. A significantly (P<0.001) higher level of percent uninhibited AChE activity was recorded in all field isolates (36.36±0.46–43.77±1.21) in comparison to the susceptible population (29.39±0.40). The AChE activity was positively correlated with RF against malathion with a correlation coefficient (r) of 0.359. Analysis of nucleotides and their deduced amino acids sequences of partial AChE3 gene revealed the presence of six amino acid substitutions (I48L, I54V, V71A, I77M, S79P and R86Q). Three novel amino acid substitutions (V71A, I77M and S79P) in partial AChE3 gene were also identified in some of the isolates which may possibly have a role in OP resistance development. The PCR-RFLP assay with HaeIII revealed the presence of restriction site corresponding to R86Q mutation in all the field isolates along with an additional restriction site in seven field isolates corresponding to V71A mutation. The results of the study indicate the involvement of both insensitive AChE and higher percent uninhibited AChE activity as the possible mechanism in these field isolates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call