Abstract

Using nuclei isolated from neonatal cardiomyocytes, we have mapped the DNase I hypersensitive sites (DHSs) residing within the 5'-upstream regions of the hamster cardiac myosin heavy-chain (MyHC) gene. Two cardiac-specific DHSs within the 5 kb upstream region of the cardiac MyHC gene were identified. One of the DHSs was mapped to the -2.3 kb (beta-2.3 kb) region and the other to the proximal promoter region. We further localized the beta-2.3 kb site to a range of 250 bp. Multiple, conserved, muscle regulatory motifs were found within the beta-2.3 kb site, consisting of three E-boxes, one AP-2 site, one CArG motif, one CT/ACCC box and one myocyte-specific enhancer factor-2 site. This cluster of regulatory elements is strikingly similar to a cluster found in the enhancer of the mouse muscle creatine kinase gene (-1256 to -1050). The specific interaction of the motifs within the beta-2.3 kb site and the cardiac nuclear proteins was demonstrated using gel mobility-shift assays and footprinting analysis. In addition, transfection analysis revealed a significant increase in chloramphenicol acetyltransferase activity when the beta-2.3 kb site was linked to a heterologous promoter. These results suggest that previously undefined regulatory elements of the beta-MyHC gene may be associated with the beta-2.3 kb site.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call