Abstract

Morphological profiles (MPs) are a useful tool for remotely sensed image classification. These profiles are constructed on a base image that can be a single band of a multicomponent remote sensing image. Principal component analysis (PCA) has been used to provide other base images to construct MPs in high-dimensional remote sensing scenes such as hyperspectral images [e.g., by deriving the first principal components (PCs) and building the MPs on the first few components]. In this paper, we discuss several strategies for producing the base images for MPs, and further categorize the considered methods into four classes: linear, nonlinear, manifold learning-based, and multilinear transformation-based. It is found that the multilinear PCA (MPCA) is a powerful approach for base image extraction. That is because it is a tensor-based feature representation approach, which is able to simultaneously exploit the spectral-spatial correlation between neighboring pixels. We also show that independent component analysis (ICA) is more effective for constructing base images than PCA. Another important contribution of this paper is a new concept of multiple MPs (MMPs), aimed at synthesizing the spectral-spatial information extracted from the multicomponent base images, and further enhancing the classification accuracy of MPs. Moreover, we propose two different strategies to interpret the newly proposed MMPs by considering their hyperdimensional feature space: decision fusion and sparse classifier based on multinomial logistic regression (MLR). Experiments conducted on three well-known hyperspectral datasets are used to quantitatively assess the accuracy of different algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.