Abstract

Dynamic Bayesian networks (DBNs) are a popular method for driver intention estimation and trajectory prediction. To account for hybrid state spaces and non-linear system dynamics, sequential Monte Carlo (SMC) methods are often the inference method of choice. However, in state estimation problems with high uncertainty, SMC methods typically suffer from either high complexity (using many samples) or low accuracy (using an insufficient number of samples). In this paper, we present a multiple model unscented Kalman filter based DBN inference method for driver intention estimation and multi-agent trajectory prediction. This inference method reduces complexity, while still keeping the benefits of sample-based evaluation of non-linear and non-continuous transition models. Firstly, the state of the DBN is approximated as a mixture of Gaussians and estimated over time by tracking the multi-agent system. Secondly, a probabilistic forward simulation of the belief is performed to generate interaction-aware trajectories for all agents and all intention hypotheses. The proposed method is compared to SMC-based inference methods in terms of accuracy, variance and runtime in both simulations and real-world scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.